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We study quantum phase transitions involving fractional quantum Hall states using numerical calculations of
entanglements and related quantities. We tune finite-size wave functions on spherical geometries by varying the
interaction potential away from the Coulomb interaction. We uncover signatures of quantum phase transitions
contained in the scaling behavior of the entropy of entanglement between two parts of the sphere. In addition
to the entanglement entropy, we show that signatures of quantum phase transitions also appear in other aspects
of the reduced density matrix of one part of the sphere.
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I. INTRODUCTION

An exciting interdisciplinary development in recent years
has been the description of condensed-matter phases using
entanglement measures borrowed from the field of quantum
information theory.1 One very recent example is the charac-
terization of topological order in fractional quantum Hall
states2–4 using entanglement. Topologically ordered ground
states are characterized by fractionalized excitations, degen-
eracies on higher-genus surfaces, and an energy gap in the
excitation spectrum above the ground state.5 For example, on
a genus-g surface, the Laughlin state at filling �=1 /m has mg

ground states. Although a number of spin models theoreti-
cally possess topological order, the only confirmed experi-
mental realizations of topological order are fractional quan-
tum Hall �FQH� states of two-dimensional �2D� electrons in
a magnetic field. In this paper we focus on this most realistic
class of topologically ordered states. FQH states have been
the object of further intense attention because of the possi-
bility of cold-atom realizations,6 and more recently due to
quantum computation proposals based on their topological
properties.7

In considering entanglement properties, we will focus on
bipartite entanglement between two parts �A and B� of the
system. This is characterized by the reduced density matrix
�A=trB � of subsystem A, obtained by tracing out all the B
degrees of freedom. While it is instructive to study the upper
part of the eigenvalue spectrum of �A, the so-called entangle-
ment spectrum, it is also often convenient to extract a single
number from this spectrum. For the latter purpose we will
use the entanglement entropy, SA=−tr��A ln �A�.

To study topological order in FQH states, Refs. 2 and 3
exploited the concept of topological entanglement entropy,8,9

which appears in the entanglement entropy SA between a
block A and the rest �B� of the system. On the other hand,
Ref. 4 studies the spectrum of �A and extracts information
relevant to the topological order from one end of the spec-
trum.

A quantity characterizing a phase should also provide sig-
natures of quantum phase transitions leading into or away
from that phase. This idea is already fruitful in one-
dimensional �1D� physics, where the �asymptotic� block en-

tanglement entropy can distinguish between gapless and
gapped phases. This allows one to pinpoint the phase transi-
tion between gapped and gapless phase, in particular in
DMRG calculations where the block entanglement entropy is
readily available. For the case of quantum phase transitions
involving topologically ordered states, entanglement studies
have been exploited for the simpler “toy” case of Kitaev
models with order-destroying additional terms.10,11 In this
paper, we will examine the utility of entanglement calcula-
tions for studying more “realistic” topological phase transi-
tions, namely, transitions involving FQH states. FQH states
being the only experimental examples of topological order,
this is an important step toward developing entanglement-
based tools that are useful for experimentally relevant situa-
tions.

We study phase transitions between FQH and non-FQH
states driven by a change in the interaction potential. Specifi-
cally, using the Haldane pseudopotential description of inter-
actions projected to specific Landau levels,12 we vary the
first pseudopotential V1 away from its Coulomb potential
value. The transition we mainly focus on involves the best-
known FQH state, for fermions at filling �=1 /3. With a Cou-
lomb interaction between the fermions, the ground state is
known to be an FQH state topologically equivalent to the
Laughlin state.13 If the first pseudopotential is reduced
enough, the Laughlin state ceases to be a good description of
the ground state. There is thus a phase transition as a func-
tion of V1.14 We will present entanglement calculations
which probe this phase transition. We also present results for
filling fraction �=5 /2, where the possibility of a more intri-
cate quantum Hall state �the Moore-Read state15� provides a
more challenging situation.

In Sec. II, we summarize necessary background material
on the topological entanglement entropy � and on FQH wave
functions and transitions, and develop the scaling concepts
necessary for treating phase transitions. In the subsequent
sections, we use three different aspects of entanglement to
probe these phase transitions. First, we consider the en-
tanglement entropy of a block with the rest of the system,
and track phase transitions through the behavior of this quan-
tity as a function of block size and system size. Since our
calculations are based on finite-size wave functions, there are
limiting procedures involved which can be performed in dif-
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ferent orders. Results obtained using different limit orders
are discussed in Secs. III–V.

Second, we consider the top part of the reduced density-
matrix spectrum. This analysis is based on the identification
of features of the entanglement spectrum in terms of topo-
logical order and related edge physics.4 We show in Sec. VI
how the entanglement spectrum is affected when the system
is driven through a quantum phase transition.

Finally, in Sec. VII we use the concept of majorization,
which is based on comparing complete reduced density-
matrix spectra for two wave functions. Majorization relations
between reduced density matrices obtained from condensed-
matter wave functions have been the subject of intriguing
recent studies.16,17 While the full implications are not yet
clear, this work adds to the growing understanding of major-
ization in condensed-matter systems.

II. ENTANGLEMENT AND FQH STATES

A. Block entanglement entropy and topological phase
transitions

For 2D topologically ordered systems, an important recent
result8,9 relates the block entanglement entropy SA to the to-
pological order. The dependence of the block entanglement
entropy SA on the length L of its boundary is asymptotically
linear, in accord with the “area law.” In addition, Refs. 8 and
9 have found that this dependence also has a topological
subleading term,

SA�L� →
L→�

�L − � .

The subleading term is called the topological entanglement
entropy �abbreviated topological entropy� and is a constant
for a given topologically ordered phase, �=ln D. Here D is
the total quantum dimension characterizing the topological
field theory describing the phase.

The concept of topological entropy is an important devel-
opment because the usual definition of topological order is
often unwieldy to use in practice for theoretical or numerical
studies of such order. The entanglement-based characteriza-
tion provides a different route for identifying topological or-
der and, by extension, topological phase transitions. After the
quantity ��� was introduced for topologically ordered states
in general, it has been explored in several specific contexts,
including quantum Hall states,2,3,18–20 quantum dimer
models,21 and Kitaev models.10,11,22–24

We will employ considerations of both the leading linear-
ity and the subleading invariant term to characterize topo-
logical phase transitions. Let us consider, very generally,
quantum phase transitions between a topologically ordered
phase and another phase. For the block entanglement en-
tropy, let us imagine that we have determined the asymptotic
relationship

SL →
L→�

�L − s0, �1�

where L is the boundary of the block. Note that this is not
always possible; in some 2D phases the leading term might
not be purely linear.25–29 Note also that the above behavior

does not necessarily imply topological order; Ref. 21 gives
an example of a nontopological state following such a rela-
tionship with nonzero s0.

If we are in a topologically ordered phase, the negative
intercept s0 will by definition be equal to the topological
entropy, �=ln D. Figure 1 shows some possibilities of what
can happen to s0 as the 2D system is driven across a quantum
phase transition away from the topologically ordered state by
varying a parameter X across the critical value Xc. In the
parameter range X�Xc where the system is in the topologi-
cally ordered phase, s0 is fixed at a positive plateau �s0=��.

Case A shows a transition into another topologically or-
dered state with a different quantum dimension; s0 jumps to
another constant value ��. The other figures show transitions
to nontopological phases. Case B shows a transition to a
gapped state which is not topologically ordered—the inter-
cept s0 drops to zero. �Ref. 10 treats an example.� Case C
shows a transition into a nontopological phase, in which s0 is
nonzero but not constant. Finally, Case D shows a transition
into a state where the leading term in the asymptotic behav-
ior of SA�L� is not linear, so that s0 is undefined.

B. FQH wave functions on spheres

For finite-size studies of fractional quantum Hall physics,
spherical and toroidal geometries are particularly popular
when one wants to avoid complications due to the edge. We
set notation by providing a rapid review of FQH wave func-
tions on spheres.12,14 We study N electrons on a sphere of
radius R, subjected to the magnetic field B provided by a
magnetic monopole at the center of the sphere. The Dirac
quantization condition requires the number of fluxes N�

=4�R2B /�0 to be integral, where �0=h /e is the quantum of
flux. If we measure length in units of the magnetic length
lB=�	 /eB, then the quantization condition is R=�N� /2. The
N�+1 Landau-level orbitals are labeled either l=0 to N� or
Lz=−L to +L. The wave functions in spherical coordinates
are given by

�
l��,���2 = �cos
�

2
�2N�−2l�sin

�

2
�2l

.

There is no dependence on the azimuthal angle; the orbitals
are each localized around a “circle of latitude,” with the l

cX cX

s0

cX cX

s0 s0

s0

X

XX

(C) (D)

X

(A) (B)

FIG. 1. �Color online� Possible behaviors of s0, defined in Eq.
�1�, within a topologically ordered phase �X�Xc� and after a phase
transition into a different phase �XXc�.
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=0 orbital localized near the “north pole.” Basis states for the
N-electron wave functions are expressed in terms of the oc-
cupancies of these orbitals.

To define entanglements between two parts of the sphere,
one has to first partition the sphere into A and B. We define
block A to be the first lA orbitals, extending spatially from the
north pole out to some latitude, i.e., including orbitals l=0
through l= lA−1.

While neighboring orbitals do overlap, it is natural to
think of the location where their amplitudes are equal,
�
l����2= �
l+1����2, as the “boundary” between the orbital l
and the orbital �l+1�. This happens at angle

tan2�l

2
=

l + 1

N� − l
.

The boundary between partitions A and B is thus a circle of
latitude at polar angle �lA−1. The boundary length is

ClA
�N� = 2�R sin �lA−1 =

4�R�lA�N� + 1 − lA�
N� + 1

.

In finite-size spherical geometries, FQH states do not ap-
pear exactly at the filling fraction �. Instead, the number of
orbitals �N�+1� is related to the number of particles N by

N� = N�−1 − S ,

where the shift S is an integer determined by the FQH state.30

Although S is insignificant in the thermodynamic limit, it can
create an “aliasing” problem in numerical studies: different
FQH states can compete at the same finite values of N and
N�.

C. Exact diagonalization

Our analysis is based on numerical exact diagonalization
of Coulomb-type Hamiltonians projected onto appropriate
Landau levels �lowest Landau level for �=1 /3 and the sec-
ond Landau level for �=5 /2�. We employ the spherical ge-
ometry described above. For this work, we have calculated
�=1 /3 wave functions up to 14 fermions and �=5 /2 wave
functions up to 20 fermions. To give an idea of the scale of
these calculations, we note that for the N=20 wave functions
at �=5 /2 the Hilbert-space dimension is 193 498 854, while
for the N=14 wave functions at �=1 /3, it is 129 609 224.
Dimensions are given here after reduction using the discrete
symmetry under global Lz flip.

We used the Lanczos algorithm to compute the system
ground state. Calculations were performed on a PC cluster
with 24 cores �AMD Opteron 265� and 48 Gbytes of
memory. A Lanczos iteration typically requires up to 17 h of
CPU time for the largest Hilbert spaces. In our study of
phase transitions, calculations are particularly time intensive
when the system is in or near a gapless phase, in which case
the Lanczos procedure requires a larger number of iterations
to converge.

D. Phase transitions

For FQH systems, the natural interaction parameter to
vary is one of the Haldane pseudopotentials Vm obtained by

decomposing the interaction potential into channels specified
by the relative angular momentum m of the interacting
particles.12,14 We use interaction potentials whose m=1
pseudopotential V1 is changed, while the other Vm are fixed
at the Coulomb value for that Landau level. We calculate and
present wave-function properties as a function of �V1� �V1
−V1

coul�. Tuning of V1 loosely represents variable aspects of
FQH experiments, such as the thickness of the quantum well
where the 2D electron gas resides.

For the �=1 /3 case, the exact Laughlin state is obtained
for �V1→ +� �short-range interaction�, and continues to be a
good description of the state for the Coulomb potential,
�V1=0. However, for negative �V1� �V1−V1

coul�, there is a
quantum phase transition at some �V1=�V1c�0 into a non-
FQH incompressible state.14 The overlap plots of Fig. 2 �left
panel� show the transition to be somewhere between �V1=
−0.065 and �V1=−0.11. The non-FQH state for �V1��V1c
presumably has charge-density-wave or Wigner-crystalline
order;14 the details are not important for our purposes.

For �=5 /2, the overlaps �Fig. 2� suggest that the Moore-
Read state is stable in some window of slightly positive �V1
�around �V1	0.03�, and that there are transitions on either
side of this phase to non-FQH phases.31,32 The non-FQH
phases are possibly a striped charge-density-wave phase on
the left of the Moore-Read region and a composite Fermi sea
on the right.32

E. Extrapolation for s0

The definition of the topological entanglement entropy �,
or the quantity s0 in Eq. �1�, involves two extrapolations: �1�
to the thermodynamic limit, N→�, and �2� to the asymptotic
limit of the size of the A block, i.e., lA�1. This double-
scaling limit can be approached via different possible ex-
trapolation paths in �N , lA� space. To describe the different
extrapolation methods, we first rewrite the relation �1� for
finite N and lA:

SlA
�N� = s1ClA

�N� − s0�N� . �2�

We have ignored lA dependence of s0 and both N and lA
dependences of s1. Our experience with numerical wave
functions indicates that these dependences are generally
weak, at least for model FQH wave functions. Note that,
even for topologically ordered model FQH states, the block
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FIG. 2. �Color online� Overlaps of ground-state wave functions
at interactions relevant to fillings 1/3 and 5/2, respectively, with
Laughlin and Moore-Read wave functions. A large-N and a small-N
case are shown for each fraction.
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entanglements SlA
are not linear in �lA for finite N �cf. Fig. 1

in Ref. 2�. The reason is that, in the curved geometry of the
sphere, �lA is proportional to the square root of the area of
the A region, but is not proportional to the circumference
ClA

�N�.
In Sec. III, we consider the method used in Refs. 2 and 3,

namely, performing the N→� extrapolation first for each lA,
and then using the resulting SlA

��� versus ClA
���	�lA to

extract s0��� or �. In Sec. IV we consider the extrapolation
procedure in reverse order, namely, first extracting s0�N�
from finite-size SlA

versus ClA
dependences, and then taking

the N→� limit.
In Sec. V, we take the block A to be half the system

�which is a natural choice in spherical geometry�, lA= lA
�

= 1
2 �N�+1�. Examining the SlA

��N� versus ClA
��N� may be re-

garded as taking the two limits simultaneously.

F. Entanglement spectrum

Clearly, the complete spectrum of the reduced density ma-
trix �A of a subsystem A contains more information than any
one number �such as the entropy of entanglement SA� ex-
tracted from this spectrum. Extraction of additional informa-
tion from the complete spectrum has been reported in several
other condensed-matter contexts.

Reference 4 has empirically shown that, for FQH wave
functions on a sphere, the spectrum of the reduced density
matrix of one hemisphere can be related to the conformal
field theory �CFT� describing the 1D edge of the FQH state.
We exploit this notion in Sec. VI to show how quantum
phase transitions appear in the so-called entanglement spec-
trum. Another way to exploit the complete spectrum of �A is
via majorization comparisons, which we use in Sec. VII.

III. EXTRAPOLATION FOR EACH BLOCK SIZE

We attempt to employ the extrapolation method of Refs. 2
and 3, first extrapolating N→� for fixed values of lA. From
the SlA

�N� versus 1 /N plots in Fig. 3 �top four panels�, we
note that the extrapolation starts to lose meaning as one re-
duces V1 beyond the presumed transition. This is made quan-
titative by estimating goodness of fit of the SlA

�N� versus
1 /N data to simple functions. The plotted �2 estimates are
obtained from trying SlA

�N�=c0+c1 /N2; any other reasonable
function gives similar results. This �2 versus �V1 curve can
be regarded as one entanglement signature of the phase tran-
sition.

The jump in �2 gets sharper for smaller lA. In particular,
for lA=1 it is distinctly localized at �V1	−0.1. This appears
to provide a sharp estimate for the location of the transition.
One tempting interpretation is that, since the system is large
compared to a single orbital, SlA=1�N� for moderate N is al-
ready a good indicator of the thermodynamic limit; hence the
sharp jump.

One could still estimate SlA
�N→�� extrapolates, disre-

garding the “noise” in the SlA
�N� versus 1 /N data points. The

resulting SlA
��� points, plotted against �lA, give a line whose

intercept is by definition −s0. The estimates of s0, thus ob-

tained, move away from the expected value of �=ln�3
	0.55 around the transition point. However, it is important
to note that in the region �V1�−0.06, the estimates have
relatively little meaning. First, there is the increasing scatter
in the SlA

�N� versus 1 /N data, which makes the SlA
��� values

unreliable. Second, we find that the SlA
��� versus �lA curves

are more and more curved as one increases −�V1 further
away from the Laughlin state. Given the uncertainties, we do
not attempt to estimate error bars for s0. The point here is to
note how s0 loses meaning, in the large-�−�V1� region for
which we have used shaded symbols in Fig. 3. Referring
back to Fig. 1, our situation appears to be more like case D
and not like case C.

IV. DEPENDENCE ON CIRCUMFERENCE AND AREA
LAW

We now consider extrapolations in reverse order, i.e., first
find a negative intercept s0�N� for each N by looking at the
large-lA behavior at that N, and only afterward consider the N
dependence. For topologically ordered model FQH states,
the block entanglements SlA

�N� have good linear depen-
dences on the circumference ClA

�N���lA�N�+1− lA�, for any
fixed N.

Here we are of course interested in realistic wave func-
tions, i.e., the ground states of Coulomb-type potentials. In
Fig. 4, SlA

versus ClA
plots are shown for several �V1, for �

=1 /3 states of 12 particles. It is interesting to note that the
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FIG. 3. �Color online� Top four: SlA
�N� versus 1 /N for several

�V1 values, displaying how the smooth behavior of these curves
disappear. Bottom left: quality of fit ��2� to a simple function, c0

+c1 /N2. Bottom right: attempt to extract s0. The quantity is less and
less meaningful for more negative �V1 �discussion in text�. The
topological value 1

2 ln 3
0.55 is shown by dashed horizontal line.
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plots remain smooth as −�V1 is increased past the transition;
however they acquire curvature. As the dependence deviates
from the linearity of model wave functions, extracting s0�N�
loses meaning, at least for our finite-N systems. We do not
attempt estimating s0. Instead, the deviation from linearity is
shown through �2 measures. The rise in �2 again represents
the quantum phase transition.

Note that this deviation from linearity does not necessar-
ily constitute a violation of the area law, which is a statement
about the thermodynamic limit. The deviation could instead
indicate a stronger lA dependence of the quantity s1 in Eq.
�2�.

V. ENTANGLEMENT BETWEEN EQUAL HEMISPHERES

We now consider entanglement between equal
hemisphere-shaped A and B blocks, i.e., we use lA= lA

� = �N�

+1� /2. According to Eq. �2�, SlA
��N� should depend linearly

on the circumference ClA
��N��2�R��N�. For the exact

Laughlin state, an example is shown in Fig. 1 �inset� of Ref.
2. Here, we explore the fate of this linearity as a function of
�V1.

The top row in Fig. 5 plots SlA
� against �N� for several V1

values at �=1 /3. The points acquire scatter as −�V1 is in-
creased until it becomes meaningless to extract the intercept;
the situation is similar to Sec. III �Fig. 3�. This process is
indicated by the �2 curve �center panel� signifying the good-
ness of the linear fit. The �=5 /2 case �Fig. 5 bottom panel�
similarly shows that the scatter is low �so that a linear SlA

�

versus �N� fit is meaningful� only in the window of �V1
where the Moore-Read state describes the physics of the
ground state.

A technical note: for even N�, the number of orbitals is
odd, and it is impossible to divide the sphere precisely into
halves. In this case we keep lA

� =N� /2 orbitals in block A,
which nearly divides the sphere into halves, and use values

SlA
�=N�/2 for the entropy and ClA

�=N�/2�N� for the circumfer-
ence.

VI. ENTANGLEMENT SPECTRUM AND ENTANGLEMENT
GAP

Following Ref. 4, we introduce the entanglement spec-
trum � as �i=exp�−�i�, where �i are eigenvalues of the re-
duced density matrix �A of one hemisphere. The eigenvalues
can be classified by the number of fermions NA in the A
block, and also by the total “angular momentum” Lz

�A� of the
A block. It was argued4 that the low-lying spectrum �i of the
reduced density matrix for fixed NA, plotted as a function of
Lz

�A�, should display a structure reflecting the CFT describing
the edge physics. In Fig. 6 this “CFT spectrum” is marked
with an ellipse. For interactions at which the FQH state pro-
vides a good description of the physics, the CFT spectrum is
well separated by a gap from a higher “non-CFT” part of the
spectrum.

As in Ref. 4, we denote the gap between the lowest two
�i, at the Lz

�A� value where the highest-Lz
�A� member of the

CFT spectrum occurs, as �0. In Fig. 6, this is the gap between
the lowest two states at Lz

�A�=54 �marked by arrow�. We
study what happens to the spectrum as we tune the interac-
tion away from the FQH state across a quantum phase tran-
sition. We quantify the change in the spectrum in terms of
the quantity �0, defined above. �The quantities �1,2 defined in
Ref. 4, the gaps at other Lz

�A� values, are expected to have
similar dependence on �V1.�
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In Fig. 6, we plot �0 as a function of the pseudopotential
�V1 for the �=1 /3 case. This clearly shows a dramatic de-
crease in the “entanglement gap” around the region of the
phase transition. The two levels in question are also individu-
ally plotted with open dots; there is a level crossing around
�V1	−0.1. The CFT �lower� level changes very little within
the FQH region dV1−0.1. In contrast, the non-CFT �upper�
level varies more significantly, thus demonstrating its non-
universal nature. We note that for values of �V1�−0.1 the
CFT-like structure of the entanglement spectrum is lost so it
is no longer meaningful to think of �0 as the gap between
CFT and non-CFT energy levels. A similar picture is ob-
served for Moore-Read wave functions.33

VII. MAJORIZATION

The concept of majorization involves comparison of two
complete spectra. In the context of condensed-matter appli-
cations, it generally involves the comparison of two reduced

density-matrix spectra corresponding to the ground states of
two Hamiltonians with slightly different parameters.16,17,34

To define majorization, we consider two sets of n real
elements ��i and ��i sorted in decreasing order and satis-
fying �i�i=�i�i=1. One says that the set ��i majorizes the
set ��i if

∀k � �1, . . . ,n: �
i=1

k

�i � �
i=1

k

�i.

This relationship is often expressed as ���. Obviously, if
��� then S����S���, where S�x�=−�ixi ln xi is the von
Neumann entropy.

In 1D quantum systems, the spectrum of the reduced den-
sity matrix for a spatial block has been argued16,17,34 to be-
come more majorized as one moves along a renormalization
group �RG� flow, away from an RG fixed point. As of now,
there are no established general results for 2D quantum
states.

In Fig. 7, we examine majorization of reduced density
matrices between ground states at different values of the
pseudopotential V1. We show results for the �=1 /3 system
with N=12 particles, and the �=5 /2 system with N=18 par-
ticles. For the �=1 /3 system, we find that the eigenspectrum
is continuously majorized as �V1 decreases down to the
value �V1=−0.10, i.e., down to the phase transition region.
In this region, the eigenspectrum of �A for each �V1 ma-
jorizes the �A eigenspectrum at a smaller �more negative�
�V1. For �V1�−0.1, the �A spectra are not majorized. This
result is robust for different sizes �lA� of the A block. A
similar picture emerges for the �=5 /2 system; majorization
occurs in a region roughly corresponding to where the
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FIG. 6. �Color online� Top panels: entanglement spectrum, �
=1 /3, N=12, block A containing lA=17 orbitals and NA=6 fermi-
ons. Main plot: ground state for �V1=0.0 �Coulomb interaction�.
Ellipse indicates the most prominent “conformal” part of the spec-
trum. Arrow indicates the entanglement gap �0 between CFT and
non-CFT parts of the spectrum. Inset shows exact Laughlin state,
which has no higher-lying non-CFT part. Lower panels: empty dots
show two lowest levels at Lz

�A�=54, plotted against �V1. Filled
squares show entanglement gap, the difference of the two lowest
levels.
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ground state has the structure of the Moore-Read state. How-
ever, the effect is more fragile, e.g., the extent of �V1 values
where the majorization is found, depends on the partition
size �lA� used. Note for �=1 /3 filling that SlA

has a kink near
the transition point. No such feature is seen for the �=5 /2
case, neither in SlA

�V1� not in its derivative.
To summarize, we have demonstrated for �=1 /3 that the

region where majorization occurs coincides dramatically
with the region where the system is in an FQH state; we no
longer find majorization away from this phase. Note that the
phase transition around �V1	−0.1 is likely a first-order
phase transition and therefore should not be regarded as an
RG fixed point. The situation is similar but less clear for �
=5 /2. A full understanding is lacking at the moment, but
several intriguing speculations present themselves. Most ob-
viously, it is tempting to think of majorization being an in-
dicator of quantum phase transitions. Second, since the re-
duced density matrix of a block of the sphere contains
information about the physics of the quantum Hall edge,4 it
is possible that our majorization results can be interpreted in
terms of the evolution of the edge as a function of �V1.

VIII. CONCLUSIONS

We have presented a numerical study of how quantum
phase transitions involving fractional quantum Hall states are
manifested in entanglement measures and related quantities.
We used three extrapolation methods to examine the double-
scaling limit where the block entanglement intercept �s0 in
Eq. �1�� is defined. We showed that the breakdown of these
extrapolation procedures signals the quantum phase transi-
tions away from the topologically ordered incompressible
FQH states. In addition, the entanglement spectrum was used
in more detail in two different ways to characterize the quan-

tum phase transitions, exploiting recently developed con-
cepts of CFT spectrum and majorization.

Our work raises several open questions and directions.
First, since we have explored topological phase transitions
on spherical geometries only, it would be instructive to look
for analogous signatures on a toroidal geometry. Entangle-
ment scaling behaviors are known in much less detail for
FQH states on the torus, and further investigations are
clearly needed.

Second, our results on majorization invite a thorough in-
vestigation of this concept, in general for two-dimensional
systems and in particular both for 2D phase transitions and
for topologically ordered states. It would appear that the
knowledge necessary for putting our findings in context does
not yet exist. The study of majorization, and the upper part of
the reduced density-matrix spectrum, also raises the question
of other signatures of topological phase transitions one might
yet extract from the full �A spectrum.

Finally, for topologically ordered states, it is promising to
explore our three extrapolation methods, for extracting the
topological quantity �. In previous work with FQH states on
spherical geometries,2,3 the focus has been on the first ex-
trapolation procedure �Sec. III�. If the topological entangle-
ment entropy is to be used to identify intricate FQH states
and their CFT’s, improved methods of calculating � are vital.
Alternate extrapolation methods are one direction that needs
to be explored in this regard.
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